
Scaling Instagram
AirBnB Tech Talk 2012

Mike Krieger
Instagram

me

- Co-founder, Instagram

- Previously: UX & Front-end
@ Meebo

- Stanford HCI BS/MS

- @mikeyk on everything

communicating and
sharing in the real world

30+ million users in less
than 2 years

the story of how we
scaled it

a brief tangent

the beginning

Text

2 product guys

no real back-end
experience

analytics & python @
meebo

CouchDB

CrimeDesk SF

let’s get hacking

good components in
place early on

...but were hosted on a
single machine

somewhere in LA

less powerful than my
MacBook Pro

okay, we launched.
now what?

25k signups in the first
day

everything is on fire!

best & worst day of our
lives so far

load was through the
roof

first culprit?

favicon.ico

404-ing on Django,
causing tons of errors

lesson #1: don’t forget
your favicon

real lesson #1: most of
your initial scaling

problems won’t be
glamorous

favicon

ulimit -n

memcached -t 4

prefork/postfork

friday rolls around

not slowing down

let’s move to EC2.

scaling = replacing all
components of a car

while driving it at
100mph

since...

“"canonical [architecture]
of an early stage startup

in this era."
(HighScalability.com)

Nginx &
Redis &
Postgres &
Django.

Nginx & HAProxy &
Redis & Memcached &
Postgres & Gearman &
Django.

24h Ops

our philosophy

1 simplicity

2 optimize for
minimal operational

burden

3 instrument
everything

walkthrough:
1 scaling the database
2 choosing technology
3 staying nimble
4 scaling for android

1 scaling the db

early days

django ORM, postgresql

why pg? postgis.

moved db to its own
machine

but photos kept growing
and growing...

...and only 68GB of
RAM on biggest
machine in EC2

so what now?

vertical partitioning

django db routers make
it pretty easy

def db_for_read(self, model):
 if app_label == 'photos':
 return 'photodb'

...once you untangle all
your foreign key

relationships

a few months later...

photosdb > 60GB

what now?

horizontal partitioning!

aka: sharding

“surely we’ll have hired
someone experienced
before we actually need

to shard”

you don’t get to choose
when scaling challenges

come up

evaluated solutions

at the time, none were
up to task of being our

primary DB

did in Postgres itself

what’s painful about
sharding?

1 data retrieval

hard to know what your
primary access patterns
will be w/out any usage

in most cases, user ID

2 what happens if
one of your shards

gets too big?

in range-based schemes
(like MongoDB), you split

A-H: shard0
I-Z: shard1

A-D: shard0
E-H: shard2
I-P: shard1
Q-Z: shard2

downsides (especially on
EC2): disk IO

instead, we pre-split

many many many
(thousands) of logical

shards

that map to fewer
physical ones

// 8 logical shards on 2 machines

user_id % 8 = logical shard

logical shards -> physical shard map

{
 0: A, 1: A,
 2: A, 3: A,
 4: B, 5: B,
 6: B, 7: B
}

// 8 logical shards on 2 4 machines

user_id % 8 = logical shard

logical shards -> physical shard map

{
 0: A, 1: A,
 2: C, 3: C,
 4: B, 5: B,
 6: D, 7: D
}

little known but awesome
PG feature: schemas

not “columns” schema

- database:
 - schema:
 - table:
 - columns

machineA:
 shard0
 photos_by_user
 shard1
 photos_by_user
 shard2
 photos_by_user
 shard3
 photos_by_user

machineA:
 shard0
 photos_by_user
 shard1
 photos_by_user
 shard2
 photos_by_user
 shard3
 photos_by_user

machineA’:
 shard0
 photos_by_user
 shard1
 photos_by_user
 shard2
 photos_by_user
 shard3
 photos_by_user

machineA:
 shard0
 photos_by_user
 shard1
 photos_by_user
 shard2
 photos_by_user
 shard3
 photos_by_user

machineC:
 shard0
 photos_by_user
 shard1
 photos_by_user
 shard2
 photos_by_user
 shard3
 photos_by_user

can do this as long as
you have more logical
shards than physical

ones

lesson: take tech/tools
you know and try first to
adapt them into a simple

solution

2 which tools where?

where to cache /
otherwise denormalize

data

we <3 redis

what happens when a
user posts a photo?

1 user uploads photo
with (optional) caption

and location

2 synchronous write to
the media database for

that user

3 queues!

3a if geotagged, async
worker POSTs to Solr

3b follower delivery

can’t have every user
who loads her timeline

look up all their followers
and then their photos

instead, everyone gets
their own list in Redis

media ID is pushed onto
a list for every person

who’s following this user

Redis is awesome for
this; rapid insert, rapid

subsets

when time to render a
feed, we take small # of
IDs, go look up info in

memcached

Redis is great for...

data structures that are
relatively bounded

(don’t tie yourself to a
solution where your in-

memory DB is your main
data store)

caching complex objects
where you want to more

than GET

ex: counting, sub-
ranges, testing
membership

especially when Taylor
Swift posts live from the

CMAs

follow graph

v1: simple DB table
(source_id, target_id,

status)

who do I follow?
who follows me?

do I follow X?
does X follow me?

DB was busy, so we
started storing parallel

version in Redis

follow_all(300 item list)

inconsistency

extra logic

so much extra logic

exposing your support
team to the idea of
cache invalidation

redesign took a page
from twitter’s book

PG can handle tens of
thousands of requests,
very light memcached

caching

two takeaways

1 have a versatile
complement to your core
data storage (like Redis)

2 try not to have two
tools trying to do the

same job

3 staying nimble

2010: 2 engineers

2011: 3 engineers

2012: 5 engineers

scarcity -> focus

engineer solutions that
you’re not constantly
returning to because

they broke

1 extensive unit-tests
and functional tests

2 keep it DRY

3 loose coupling using
notifications / signals

4 do most of our work in
Python, drop to C when

necessary

5 frequent code reviews,
pull requests to keep
things in the ‘shared

brain’

6 extensive monitoring

munin

statsd

“how is the system right
now?”

“how does this compare
to historical trends?”

scaling for android

1 million new users in 12
hours

great tools that enable
easy read scalability

redis: slaveof <host> <port>

our Redis framework
assumes 0+ readslaves

tight iteration loops

statsd & pgfouine

know where you can
shed load if needed

(e.g. shorter feeds)

if you’re tempted to
reinvent the wheel...

don’t.

“our app servers
sometimes kernel panic

under load”

...

“what if we write a
monitoring daemon...”

wait! this is exactly what
HAProxy is great at

surround yourself with
awesome advisors

culture of openness
around engineering

give back; e.g.
node2dm

focus on making what
you have better

“fast, beautiful photo
sharing”

“can we make all of our
requests 50% the time?”

staying nimble = remind
yourself of what’s

important

your users around the
world don’t care that you

wrote your own DB

wrapping up

unprecedented times

2 backend engineers
can scale a system to

30+ million users

key word = simplicity

cleanest solution with the
fewest moving parts as

possible

don’t over-optimize or
expect to know ahead of
time how site will scale

don’t think “someone
else will join & take care

of this”

will happen sooner than
you think; surround
yourself with great

advisors

when adding software to
stack: only if you have to,
optimizing for operational

simplicity

few, if any, unsolvable
scaling challenges for a

social startup

have fun

